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Abstract

In a previous article, we defined a very flexible notion of suborbifold and characterized those suborbifolds which can
arise as the images of orbifold embeddings. In particular, suborbifolds are images of orbifold embeddings precisely
when they are saturated and split. This article addresses the problem of orbifold structure inheritance for three
orbifolds Q c £ c O. We identify an appealing but ultimately inadequate notion of an inherited canonical orbifold
substructure. In particular, we give a concrete example where the orbifold structure of @ is canonically inherited from
%, and the orbifold structure of P is canonically inherited from O, but the orbifold structure of Q is not canonically
inherited from O. On the other hand, it is easy to see that when Q is embedded in $, and P is embedded in O, all of
the canonical inherited orbifold substructures will agree. We also investigate the property of saturation in this context,
and give an example of a suborbifold with the canonical orbifold substructure that is not saturated.
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1. Introduction

In [5], we defined a very flexible notion of suborbifold and characterized those suborbifolds which can arise as the
images of orbifold embeddings. In particular, suborbifolds are images of orbifold embeddings if and only if they are
saturated and split. For manifolds, it is a fundamental result of differential topology that submanifolds are precisely
the images of embeddings, and in fact, many authors use this characterization as the definition of submanifold. Thus,
we were surprised to find examples of suborbifolds that were not images of orbifold embeddings. Because of these
examples, we began to look at the issue of orbifold substructure inheritance for three orbifolds Q c £ c O. To do
this, we first look more deeply at the definition of suborbifold and identify an appealing but ultimately inadequate
notion of an inherited canonical orbifold substructure. The appeal comes from the fact that certain choices in the
definition of suborbifold can be made in a unique way. The inadequacy comes from the observation that these unique
canonical suborbifold structures do not persist through inclusion. In particular, we give a concrete example of three
orbifolds Q c P c O, where the orbifold structure of Q is canonically inherited from #, and the orbifold structure of
% is canonically inherited from O, but the orbifold structure of Q is not canonically inherited from O. On the other
hand, it is easy to see that when Q is embedded in P, and # is embedded in O, that all of the canonical inherited
orbifold substructures will agree. To be clear, by embedded, we mean realized as the image of an orbifold embedding
[5]. In some ways, this phenomenon can be considered an orbifold structure analog of the difference between one-
to-one immersions and embeddings in differential topology. That is, the topology induced by the immersion may not
agree with the relative topology of its image. In the orbifold context, one could say we have “immersed” orbifold
substructures that are not “embedded,” although we do not use or define these terms. We also investigate further
the property of saturation, and give an example of a suborbifold with the canonical orbifold substructure that is not
saturated.

Email addresses: jborzell@calpoly.edu (Joseph E. Borzellino), vwb2@psu. edu (Victor Brunsden)

Preprint submitted to Topology and its Applications October 15, 2017



2. Orbifold Preliminaries

All of the following definitions come from our article [5] and the references therein (especially, [2, 4]). This will be
our standard reference for orbifold background material. We also assume the reader is familiar with the definition of
a smooth orbifold modeled after Thurston [7]. Such orbifolds are referred to as classical effective orbifolds in [1]. As
such, each point x in a smooth orbifold O, has a neighborhood U, or orbifold chart (U,,T;) or (U, Ty, px, ¢x) Where
U, =R", by : U,J)T, > U,isa homeomorphism, and ¢,(0) = x. In the 4-tuple notation, we are making explicit the
(faithful) representation p, : T', — Diff™ (U,,0). Diff*(U,, 0) are the group of smooth diffeomorphisms that leave the
origin fixed. The isotropy group of x is the group I';. It is unique up to isomorphism. By the Bochner-Cartan theorem
[2, 6], the smooth action of I, is smoothly conjugate to the linear action on U, given by the differential of the action.
So without loss of generality, we may assume p, : 'y — O(n). These charts are subject to overlap compatibility
conditions that give O its orbifold structure. More detail can be found in [2]. We now recall several definitions related
to the notion of suborbifold from [3, 5]:

Definition 2.1. A suborbifold P of an orbifold O consists of the following:

1. A subspace Xp C Xp equipped with the subspace topology.

2. For each x € Xp and neighborhood W of x in Xy there is an orbifold chart (U,,T, Px, @) about x in O with
U, c W, asubgroup A, C I, of the isotropy group of x in O and a p,(A,) invariant submanifold V.cU, =R,
so that (V,, A,/Qy, p4l A,»> V) 1s an orbifold chart for P, where Q, = {'y €A oWy, = Id}. (In particular, the
intrinsic isotropy subgroup at x € P is A,/Q,).

3. For xin P, V, = y«(V,/px(A,)) = U N Xp is an orbifold chart.

Implicit in this definition is the requirement that the invariant submanifolds ¥V, be smooth, and that the collection
of charts {(Vy, A,/Q,, Pxla,» )} satisfy the overlap compatibility conditions of an orbifold, thus giving P the structure
of a smooth orbifold. As previously noted, condition (2) is not very restrictive (see [5]).

Motivated by Thurston’s notion of suborbifold [7], we made the following definition:

Definition 2.2. P c O is a full suborbifold of O if P is a suborbifold with A, =T, for all x € P.

When necessary for clarity, we will use the notation I'; o to denote the intrinsic isotropy group of a point x in an
orbifold O, and use the subscript O as well on needed subgroups of ', 0. When the base point x is clear, we may drop
it as well. In the case of a suborbifold  c O we always have the following exact sequence of groups

1 — Qx,O — Ax,O C Fx,O — Fx,?’ — 1

where I', p denotes the intrinsic isotropy group of ¥ at x.
In characterizing those suborbifolds that are images of orbifold embeddings in [5], we identified the following two
conditions.

Definition 2.3. We say that  c O is a split suborbifold of O if the exact sequence above is (right) split for all x € P.
That is, there is a group homomorphism o : I'yp — A, o such that the composition go o = Id, where g : Ao = I'yp
is the quotient homomorphism:

Note that if  c O is split, we have A, p = Q.0 X ', p, a semidirect product, and in the case that the groups are
abelian A, p = Q, o X I, p, the direct product. Of course, if Qo or I',p is trivial, then P is split as well.

Definition 2.4. We say that # c O is a saturated suborbifold of O if for each x € P and ¥ € V., we have that
(Fx,O : 57) N Vx = Ax,O : 5}

The main result of [5] proved that a suborbifold ¢ O was the image of an orbifold embedding if and only if P
was both saturated and split. In this paper, we need the following definition to identify those suborbifolds that have
orbifold substructures which are inherited in essentially a unique way.
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Definition 2.5. A suborbifold  c O has the canonical orbifold substructure, PO inherited from O, if, in defini-
tion 2.1, A, = Stabr*‘(f/x) for all x € Xp. Thatis, forall x € Xp, Ay ={y ey |y V. c V,}, the entire stabilizer
subgroup of V, in T,.

Another way to think about this is that if % is covered at x by a chart V, c U,, then the group A, is completely
determined when P carries the canonical orbifold substructure inherited from O.

It is also clear that a saturated suborbifold  C O has the canonical orbifold substructure inherited from O. Since
embedded suborbifolds are both saturated and split [5], and the composition of orbifold embeddings is an orbifold
embedding, it follows that in the case Q is embedded in P, and P is embedded in O, that all of the canonical inherited
orbifold substructures will agree.

Examples. To illustrate some of these definitions, we revisit the following examples which are all in [5]. It is clear that
any full suborbifold carries a canonical suborbifold structure. However, this condition is not necessary as illustrated by
examples 10, 11 and 14 of [5], all of which carry canonical suborbifold structures, but are not full suborbifolds. On the
other hand, each of these suborbifolds is saturated. Furthermore, the suborbifolds of example 13, which are arguably
the most counterintuitive ([8]) examples presented in [5], do not carry inherited canonical orbifold substructures. They
differ from the other examples in that none of these suborbifolds is saturated.

Lastly, we’d like to point out that a recent article of Weilandt [8] expanded on our work in [5] and includes a
detailed discussion of the challenges surrounding the notion of suborbifold. For Weilandt, however, all suborbifolds
are saturated although his notion of full suborbifold turns out to be the same as ours. As pointed out earlier, saturated
suborbifolds already possess the canonical orbifold substructure. In section 5, we show that a suborbifold can possess
the canonical orbifold substructure, but not be saturated.

3. Inherited Canonical Orbifold Substructures

In this section, we show how to use group algebras to construct orbifolds Q C $ € O and give concrete expressions
for the inherited canonical orbifold substructures.

3.1. Review of Group Algebras

For a finite group I, let R[I'] denote the corresponding group algebra. That is, R[I'] is the |I'|-dimensional R-vector
space consisting of all formal sums 3,1 ¢, ¥, with ¢, € R, and the obvious scalar multiplication and component-wise
addition. That is, fora = } ¢,y and 8 = 3} d,y:

a+f=)(cy+dyyy, andka = (kc,)y, keR.

yel’ yel’

Because I' is a group, R[I'] becomes an algebra via:

(Z ny] (Z d55) = > (edsyys =) ey,

yel oel’ y,0el’ vell

where
e, = Z cyds = Z Cydy1y,.
yo=v yell

There is a natural (left) action of I' on R[I'] given by component-wise conjugation:

Sra=6- cy= " c0ys)

yell yel



This action is effective precisely when I has a trivial center, as §yd~' = y for all y € I" implies 6 € C(I), the center of
I'. In particular, the action is effective when I' is a simple, nonabelian group.
Now, let B c I" be a subgroup and consider its group algebra R[B]. Define the stabilizer of R[B] in I to be

Stab' (R[B]) = {y e ' | y - R[B] c R[B]}.

Let B = X, cyn € R[B] be arbitrary. Then, y € Stab" (R[B]) implies y - 8 € R[B] which in turn implies that
yny~! € B for all n € B. This means that ¥ € Ni-(B), the normalizer of B in I'. Thus, Stab" (R[B]) = Nr(B). Similarly,
let

Bl = (y eI |y-B=pforall g B}

Let B = ¥,cp cyn € R[B] again be arbitrary. Then, y € I'™Bl implies that ygy™ = 5 for all n € B. This means that
¥ € Cr(B), the centralizer of B in I'. Thus, I'*Bl = C(B). Note also that Cr-(B) is a normal subgroup of Np(B).

3.2. Constructing Orbifolds from the Group Algebra

We start by choosing a finite centerless group I', and two additional nontrivial subgroups A and B each properly
contained in the other so that {e} C A C B C I'. Let U = R[], V = R[B], and W = R[A]. Naturally, w - Vv - U.
By choice of I, O = U/T, is an [[]-dimensional (classical effective) orbifold covered by a single orbifold chart
(U,T), and the isotropy group of the origin is . We now build a suborbifold # of O using definition 2.1. We first
choose our subgroup A of I' to be A = Stab' (V) = Np(B). In this case, it follows that Q@ = Cp(B). If we let
I'p = A/Q = Nr(B)/Cr(B), then P = V/T'p is a suborbifold of O equipped with the canonical orbifold substructure,
P9, inherited from O. The intrinsic isotropy group (at the origin) is equal to I'p.

The interesting observation is that now we have the option of equipping Q with either of two canonical suborbifold
structures; one inherited from O and one inherited from #. Specifically, we can build a suborbifold Q = W/l'g of
O, equipped with the canonical orbifold substructure, QP°, inherited from O. In this case, Fg = Nr(A)/Cr(A) is the
intrinsic isotropy group (at the origin) of Q°. Or, we can build a suborbifold @ = W/I g of P, equipped with the
canonical orbifold substructure, Q”, inherited from #. In this case, Fg = Stabn’(W) / l"(f,v is the intrinsic isotropy group

(at the origin) of @”. Here, F;V represents the subgroup of I'p that fixes W pointwise. One of our main goals is to
construct an example of a suborbifold Q c £ c O, where P has the canonical orbifold structure inherited from O, and
Q@ has the canonical orbifold structure inherited from P, but Q does not have the canonical orbifold structure inherited
from O. In other words, we produce an example where Fg differs from Fz, thus showing that canonical orbifold
substructures are not uniquely inherited in general. Before we construct our example, we will unwind the definition
of FZ for reference, even though we do not need its full generality in our construction.

3.2.1. Unwinding Fg

To unwind Stab'”(W)/ IV, itis best to think geometrically. First, we get an expression for Stab'”(W). I'p consists
of those elements of " that leave V invariant, and where we regard two such elements to be the same if they differ
by an element of I" that leaves v pointwise fixed. Since Stab'”(W) consists of the elements of T'p that leave W c V
invariant, we see that such elements must be those elements of I that leave both W and V invariant, and where we
regard two elements the same if they differ by an element of T that leaves V pointwise fixed. That is,

Stab'”(W) = [ Stab" (W) N Stab" (V)]/TY = [Nr(A) N Np(B)] /Cr(B).

Now I“f,’ consists of those elements of I'» which leave W pointwise fixed. Interpreting I'p as before, we can conclude
that ) o
I, = [Stab' (V) nTY]/I" = [Nr(B) N Cr(A)] /Cr(B).



By the third isomorphism theorem we have:
17, = Stab"™ (W)/Ty
— [ Stab" (W) N Stabr(V)]/rV/[ Stab"(7) n TV |17

= [Nr(A) N Nr(B)] /Cr(B)/ [Nr(B) N Cr(A)]/Cr(B)
= [Nr(A) N Nr(B)]/ [Nr(B) N Cr(A)]
Since Cr(A) € Nr(A), the last expression may be written:

I3, = [NK(A) N Ne(B)]/ [(NK(A) N Nr(B)) N Cr(A)]
= [(Nr(A) N Nr(B)) - Cr(A)] /Cr (D),

where the last isomorphism is obtained by the second isomorphism theorem after noting that Cr(A) is a normal
subgroup of Nr(A), and thus a normal subgroup of Nr(A) N Nr(B).

4. Construction of Incompatible Inherited Canonical Orbifold Substructures

‘We now return to the question of incompatibility of inherited canonical orbifold substructures. Since this question
is of a local nature, it is sufficient to consider orbifolds that arise as quotients of a single orbifold chart. We will use the
techniques of the previous section to construct three orbifolds, Q c $ c O, where the canonical orbifold substructure
that Q inherits from % as a suborbifold is different than the canonical orbifold substructure that Q inherits from O as
a suborbifold.

As mentioned at the end of paragraph preceding section 3.2.1, we want to exhibit a situation where 1"8 differs from
r g. Given the group algebra setup and computations in the previous sections, it is sufficient to find groups A Cc B c T,
where

I'7 = [(Ne(A) N Nr(B)) - Cr(A)] /Cr(A) 2 Nr(A)/Cr(A) = T,

To that end, let A; denote the alternating group of degree k. For our groups, we let I' = As, B = A4, and
A = A3z = 7. Thus, U = R[As], V = R[A4], and W = R[Z3], vector spaces of dimensions 60, 12, and 3, respectively.
We first compute Ig = Nr(A)/Cr(A). We use standard facts from group theory and the Groupprops Subwiki [9] as our
reference. Since the order of the conjugacy class of Ain I is 10, and equal to [I" : Nr(A)], the index of the normalizer
of A inT’, we find that Ni-(A) has order 6. The only subgroup of order 6 in As is the twisted symmetric group of degree
3,83 = Z, x Z3. The centralizer, Cr(A) of A in I is a normal subgroup of Nr(A), and thus must be A since A is
abelian and the centralizer cannot be all of S3. We conclude that

Ig = Ne(8)/Cr(d) = (Za X 73)/Zs = T,

This means that in the canonical orbifold substructure that @ inherits from O, the origin has non-trivial isotropy Z,.

Next, we compute Ig = Nr(B)/Cr(B). Standard results from group theory show that the order of the conjugacy
class of B in I" is 5. This implies that the order of the normalizer Nr(B) has order 12. Since B = A4 has order 12, we
conclude that N(B) = B. Again, since the centralizer, Cr(B), of B in I" is a normal subgroup of Nr(B) = B, we find
that Cr(B) = C(B), the center of B. Since A4 is centerless, Cr(B) = {1}, and thus,

I'9 = Nr(B)/Cr(B) = B/{1} = A,.

Lastly, we compute l"g = Nrg(A) / Crg(A). For convenience, we will denote l"g by I'p = A4. Now, since A = Z3,
the order of the normalizer Nr,(A) must be 3, 6, or 12. Since there are no subgroups of order 6 in A4, and Zj3 is not
normal in Ay, it must be the case that Nr,,(A) = Zs. Thus, we also conclude that Cr,,(A) = Z3, and finally that

I = Np,,(A)/Cr, () = {1}.

This means that in the canonical orbifold substructure that Q inherits from %, the origin has trivial isotropy.
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So, we have shown that the inherited orbifold substructure, Q°, that Q inherits from O is different than, Q”, the
one that Q inherits from P. It is useful to note, however, that it is possible to recover Q% as a suborbifold of O, by
choosing A = A3 = Z3 as opposed to the entire stabilizer group Nr(A) = Z, X Z3. That is, Q" is, in fact, a suborbifold
of O with a non-canonical inherited substructure!

5. Inherited Canonical Orbifold Substructures and Saturation

In this section we show that the suborbifold £ c O constructed in section 4 is not a saturated suborbifold even
though P has the canonical orbifold substructure inherited from O. Recall, W = R[A] = R[Z3] = span{l,y,y?} C
V =R[B] = R[A4], and let W = ¢ 1 + ¢,y + ¢,2y%. Let B € B = Ay. Then

B =cil+c,Y + (P

where v = ByB~'. Then, either ¥* ¢ span{l,y,y?} or ¥» = y. The second case follows because we know the
normalizer Ng(A) = Zs. Thus, the orbit (A4 - w) N W = . Now let

@€ Nr(A) = Ny (Z3) =Ty x T3 = {a,y | @ =9° = 1,y =y7').

Then a ¢ A4 and
a-Ww=cil+cy" + cyz()/")2 =cil+ cyy2 +cpy € w.

This implies that (As - W) N V # A4 - W, and thus P is not saturated in O.
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